
1

Database Design
Entity-Relationship (ER)
Modeling
COSC 304 – Introduction to Database Systems

2

Database Design
The ability to design databases and associated applications is critical to
the success of the modern enterprise.

Database design requires understanding both the operational and
business requirements of an organization as well as the ability to
model and realize those requirements in a database.

Developing database and information systems is performed using a
development lifecycle, which consists of a series of steps. Data
analysts may have access to design documents to help understand
how to use the data properly.

3

The Importance of Database Design
Some statistics on software projects:

• 80 - 90% do not meet their performance goals
• 80% delivered late and over budget
• 40% fail or abandoned
• 10 - 20% meet all their criteria for success
• Have you been on a project that failed? A) Yes B) No

The primary reasons for failure are improper requirements
specifications, development methodologies, and design techniques.

4

Software and System Development
Software development follows an iterative process with steps:

• Specification – capturing user and system requirements, goals, and timelines
 Top-down design by specifying entities, attributes, and relationships.

• Design – develops models for system architecture and behavior. Design database
and the associated application. Special focus on transactions and UI.
 Recommend: Solid DB design before prototyping application.

• Implementation – build database statements and program code.
• Testing - executing programs to determine errors and issues.
• Maintenance – monitoring and maintaining the system after installation.
 DBMS maintenance includes monitoring performance, security, and upgrades.

5

Specification
Specification involves:

• understanding how the project fits into the organization
• project goals and success outcomes
• project timelines and deliverables
• measurement criteria for determining project success
• information on users and user requirements
• standards for database/application development that must be followed
• documentation of privacy and security concerns
• legal issues including copyright when dealing with outside developers
• information on how the project will interface with other systems

6

Specification: Mission Statements
The mission statement specifies the major project objectives with
defined metrics to evaluate if successfully completed.

NASA’s mission statement when going to the moon:
"I believe that this nation should commit itself to achieving the goal,
before this decade is out, of landing a man on the moon and returning
him safely to Earth." (John F. Kennedy May 25, 1961)

• NASA fulfilled that goal on July 20, 1969, when Apollo 11’s lunar module Eagle
touched down in the Sea of Tranquility, with Neil Armstrong and Buzz Aldrin
aboard. A dozen men would walk on the moon before the Apollo program
ended. The last of those men, Gene Cernan, left the desolate lunar surface with
these words: "We leave as we came and, God willing, as we shall return, with
peace and hope for all mankind."

7

Specification: The "Project Champion"
The "Project Champion" is a manager or senior IT person who is the
project's promoter and backer.
Many projects fail because no one takes ownership of them.

• Consequently, they take too long, go over budget, and are never deployed
effectively.

• When hiring outside consultants, make sure somebody in the organization is the
Project Champion.

• For internal projects, a Project Champion is especially important as there are
always conflicts over money, developer time, and political issues on making users
work on new applications.

Bottom line: If no one is willing to be the champion for a project, it is
likely that project will not achieve its goals.

8

Specification: Requirements Gathering
Requirements gathering collects details on organizational processes
and user issues.

• Often the organization itself does not know this information, and it can only be
determined by collecting it from user interviews.

• Through user interviews identify:
 Who are the users? Group them into classes.
 What do the users do now? (existing systems/processes)
 What are the complaints and possibilities for improvement?

• Determine the data used by the organization, identify data relationships, and
determine how data is used and generated.
 Identify unique fields (keys)
 Determine data dependencies, relationships, and constraints (high-level)
 Estimate the data sizes and their growth rates

9

Database Design
Database design is divided into three phases:

• Conceptual database design - models the collected information at a high-level of
abstraction without using a particular data model or DBMS.
 Top-down design by specifying entities, attributes, and relationships.

• Logical database design - constructs a model of the information in the domain
using a particular data model, but independent of the DBMS.
 Typically use relational model but may also use object-oriented, graphs, JSON, or XML.
 Since logical design selects a data model, it is now possible to model the information

using the features of that model (e.g. keys and foreign keys in relational model).
• Physical database design - constructs a physical model of information in a given

data model for a particular DBMS. Selects a database system and determines
how to represent the logical model on that DBMS.
 E.g. creating tables, indexes, security, data partitioning
 Physical database design is how, and logical database design is the what.
 Select a DBMS based on features, performance, price, and interoperability.

10

Database People: DA and DBA
We have seen these two database people before:

• Database administrator (DBA) - responsible for installing, maintaining, and
configuring the DBMS software.

• Data administrator (DA) - responsible for organizational policies on data
creation, security, and planning.

The DA is involved in the early phases of design including planning the
project and conceptual and logical design.
The DBA performs the physical design and actively manages deployed,
production systems.
Another common position is a (data) architect that selects systems to
use, makes design decisions, and evaluates current and future systems
at the architectural level.

11

Entity-Relationship Modeling
Entity-relationship modeling is a top-down approach to conceptual database
design that models the data as entities, attributes, and relationships.

• The entity-relationship (ER) model was proposed by Peter Chen in 1976. We will
perform ER modeling using Unified Modeling Language (UML) syntax.

The ER model refines entities and relationships by including properties of
entities and relationships called attributes, and by defining constraints on
entities, relationships, and attributes.

The ER model conveys knowledge at a high-level (conceptual level) which is
suitable for interaction with technical and non-technical users.
Since the ER model is data model independent, it can later be converted into
the desired logical model (e.g. relational model).

12

ER Model Example in UML notation

Employee

number {PK}
name
state
city
street
title
salary Project

number {PK}
name
budget
location [1..3]

Department

number {PK}
name

Has


0..1

0..*

Manages 
0..1 0..*

Has
0..10..*

0..1
 Supervises

Supervisor

Supervisee

0..*

WorksOn 
0..* 0..*

responsibility
hours

13

Entity Types
An entity type is a group of objects with the same properties which
are identified as having an independent existence.

• An entity type does not always have to be a physical real-world object such as a
person or department. It can be an abstract concept such as a project or job.

An entity instance is a particular example or occurrence of an entity
type.

• For example, an entity type is Employee. A entity instance is 'E1 - John Doe'.

14

Representing Entity Types
Entity types are represented by rectangles with the name of the entity
type in the rectangle.

Examples:

• An entity type name is normally a singular noun.
 That is, use Person instead of People, Project instead of Projects, etc.

• The first letter of each word in the entity name is capitalized by convention.

DepartmentProject

15

Entities Question
Question: How many of the following statements are true?

1) Entity types are represented using a rectangle box.
2) An entity is always a physical object.
3) An entity type is named using a plural noun.
4) Employee number is an entity.

A) 0 B) 1 C) 2 D) 3 E) 4

16

Relationships
A relationship type is a set of associations among entity types. Each
relationship type has a name that describes it.

A relationship instance is a particular occurrence of a relationship
type that relates entity instances.

There can be more than one relationship between two entity types.

17

Representing Relationship Types
The relationship type is represented as a labeled edge between the
two entity types. The label is applied only in one direction so an arrow
indicates the correct way to read it.

• A relationship type name is normally a verb or verb phrase.
• The first letter of each word in the name is capitalized.
• Do not put arrows on either end of the line.

WorksOn
Employee Project

18

Visualizing Relationships

Employee
E1

E2

E3

E4

E5

E6

E7

E8

Project
P1

P2

P3

P4

P5

WorksOn
r1

r2

r3

r4

r5

r6

r7

r8

r9

Note: This is an example of a many-to-many relationship. A project can have more than one
employee, and an employee can work on more than one project.

19

Relationship Degree
The degree of a relationship type is the number of entity types
participating in the relationship.

• For example, WorksOn is a relationship type of degree two as the two
participating entity types are Employee and Project.
 Note: This is not the same as degree of a relation which was the number of attributes

in a relation.

Relationships of degree two are binary, of degree three are ternary,
and of degree four are quaternary.

• Relationships of arbitrary degree N are called n-ary.

Use a diamond to represent relationships of degree higher than two.

20

Provides

Ternary Relationship Type Example

A project may require a part from multiple different suppliers.

Supplier

Part

Project

21

Recursive Relationships
A recursive relationship is a relationship type where the same entity
type participates more than once in different roles.

• For example, an employee has a supervisor. The supervisor is also an employee.
Each role has a role name.

Example:

• The degree of a recursive relationship is two as the same entity type participates
twice in the relationship.
 It is possible for an entity type to be in a relationship more than twice.

 Supervises

Supervisor

Supervisee
Employee

22

Relationship Question
Question: How many of the following statements are true?

1) Relationships are represented using a directed edge (with arrows).
2) A relationship is typically named using a verb.
3) It is not possible to have a relationship of degree 1.
4) The degree of a relationship is the number of attributes it has.
5) A diamond is used to represent a relationship of degree larger than
two.

A) 0 B) 1 C) 2 D) 3 E) 4

23

Attributes
An attribute is a property of an entity type or a relationship type.

• For example, entity type Employee has attributes name, salary, title, etc.

Some rules:
• By convention, attribute names begin with a lower case letter.
• Attribute names are typically adjectives or nouns.
• Each attribute has a domain, which is the set of allowable values for the attribute

(data type).
• An attribute may be single valued or have multi-values.
• An attribute may be simple if it contains a single component (e.g. salary) or

composite if it contains multiple components (e.g. address).
 Question: Is the name attribute of Employee simple or composite?

• A derived attribute is an attribute whose value is calculated from other
attributes but is not physically stored.

24

Representing Attributes
In UML attributes are listed in the rectangle for their entity. Tags are
used to denote any special features of the attributes.

• multi-valued attribute: attributeName [minVals..maxVals]
 e.g. phoneNumber [1..3]

• derived attribute: /attributeName (e.g. /totalEmp)
 Derived attribute is not stored in database (calculated on demand)

• partial primary key: {PPK} – for key field of weak entity
 A weak entity type is an entity type whose existence depends on another entity type.

25

Attribute Question
Question: How many of the following statements are true?

1) Attributes are properties of either entities or relationships.
2) An attribute may be multi-valued.
3) A composite attribute contains two or more components.
4) Each attribute has a domain representing its data type.
5) Attribute names are typically verbs.

A) 0 B) 1 C) 2 D) 3 E) 4

26

Representing Attributes and Keys
A candidate key is a minimal set of attributes that uniquely identifies
each instance of an entity type.

A primary key is a candidate key that is selected by the designer to
identify each instance of an entity type.

• Attributes labeled with {PK} in diagram.
• Note: No foreign keys in ER model but may see {FK} notation in logical diagram.

A composite key is a key that consists of two or more attributes.

27

Key Question
Question: How many of the following statements are true?

1) It is possible to have two candidate keys with different numbers of
attributes.
2) A composite key has more than 1 attribute.
3) The computer picks the primary key used in the design.
4) A relationship has a primary key.
5) An attribute has a primary key.

A) 0 B) 1 C) 2 D) 3 E) 4

28

Attributes on Relationships
An attribute may be associated with a relationship type.

For example, the WorksOn relationship type has two attributes:
responsibility and hours.

Note that these two attributes belong to the relationship and cannot
belong to either of the two entities individually (as they would not
exist without the relationship).

Relationship attributes are represented as a separate box connected
to the relationship using a dotted line.

29

Attributes in UML Notation

Employee
number {PK}
name
address

state
city
street

title
salary

Project
number {PK}
name
budget
location [1..3]
/totalEmp

Department
number {PK}
name

Has


0..1

0..*

Manages 
0..1 0..*

Has
0..10..*

WorksOn 
0..* 0..*

0..1
 Supervises

Supervisor

Supervisee

0..*

Derived
attribute

Multi-valued
attribute

Primary key

Composite
attribute

responsibility
hours

Relationship
attributes

30

ER Design Question #1
Construct a university database where:

• Each student has an id, name, gender, birthdate, and GPA.
• Each professor has a name and is in a department. Assume professor name is a

primary key.
• Each department offers courses and has professors. A department has a name

and a building location.
• Each course has a name and number and may have multiple sections.
• Each section is taught by a professor and has a section number.
• Students enroll in sections of courses and receive a grade.

31

Conclusion
Database design is divided into three phases:

• Conceptual database design
• Logical database design
• Physical database design

Effective requirements gathering is an important skill to master.
Projects should have a well-defined mission statement and project
champion to increase their probability of success.

ER (conceptual) design is performed at a high-level of abstraction
involving entities, relationships, and attributes.

• There are a variety of different diagram syntax. We used UML syntax.

32

Objectives
• Describe the three steps in database design including the results of each step.
• Describe differences between conceptual, logical, and physical data models.
• Describe how the roles of DBA and DA fit into database design. What do these

people do?
• Define and identify on an ER diagram: entity type, relationship type, degree of a

relationship, recursive relationship, attribute, multi-valued attribute, derived
attribute

• Define and identify on an ER diagram: primary key, partial primary key

Be able to model a domain explained in an English paragraph in an ER
diagram using UML notation.

33

	Slide Number 1
	Database Design
	The Importance of Database Design
	Software and System Development
	Specification
	Specification: Mission Statements
	Specification: The "Project Champion"
	Specification: Requirements Gathering
	Database Design
	Database People: DA and DBA
	Entity-Relationship Modeling
	ER Model Example in UML notation
	Entity Types
	Representing Entity Types
	�Entities Question
	Relationships
	Representing Relationship Types
	Visualizing Relationships
	Relationship Degree
	Ternary Relationship Type Example
	Recursive Relationships
	�Relationship Question
	Attributes
	Representing Attributes
	�Attribute Question
	Representing Attributes and Keys
	�Key Question
	Attributes on Relationships
	Attributes in UML Notation
	ER Design Question #1
	Conclusion
	Objectives
	Slide Number 33

