
1

Transactions

COSC 304 – Introduction to Database Systems

2

Transaction Management Overview
The database system must ensure that the data is always consistent.
Two challenges in preserving consistency:

• 1) Must handle failures of various kinds (hardware, crashes).
• 2) Must support concurrent execution of multiple transactions and guarantee

that concurrency does not cause inconsistency.

A transaction is an atomic program that executes on the database and
preserves the consistency of the database.

• The input to a transaction is a consistent database AND the output of the
transaction must also be a consistent database.

• A transaction must execute completely or not at all.

3

Transaction Management - Motivating Example
Consider a person who wants to transfer $50 from a savings account
with balance $1000 to a checking account with current balance $250.

• 1) At the ATM, the person starts the process by telling the bank to remove $50
from the savings account.

• 2) The $50 is removed from the savings account by the bank.
• 3) Before the customer can tell the ATM to deposit the $50 in the checking

account, the ATM “crashes.”

Where has the $50 gone?
It is lost if the ATM did not support transactions!
The customer wanted the withdraw and deposit to both
happen in one step, or neither action to happen.

4

ACID Properties
To preserve integrity, transactions have the following properties:

• Atomicity - Either all operations of the transaction are properly reflected in the
database or none are.

• Consistency - Execution of a transaction in isolation preserves the consistency of
the database.

• Isolation - Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions.

• Durability - After a transaction successfully completes, the changes it has made
to the database persist, even if there are system failures.

5

ACID Properties
Question: Two transactions running at the same time can see each
other's updates. What ACID property is violated?

A) atomicity
B) consistency
C) isolation
D) durability
E) none of them

6

Transaction Definition in SQL
In SQL, a transaction begins implicitly.

A transaction in SQL ends by:
• Commit accepts updates of current transaction.
• Rollback aborts current transaction and discards its updates. Failures may also

cause a transaction to be aborted.

In programming with databases you can often set the connection to
auto-commit which means a commit is done after every statement.

7

Example Transactions
Transaction to deposit $50 into a bank account:

Transaction to calculate totals for all accounts (twice):

Transaction to add a new account:

-- TRANSACTION T1:
UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT;

-- TRANSACTION T2:
SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;
COMMIT;

-- TRANSACTION T3:
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT;

8

Isolation Levels in SQL
An isolation level reflects how a transaction perceives the results of
other transactions. Lowering isolation level may improve performance
but may sacrifice consistency. The isolation level can be specified by:

SET TRANSACTION ISOLATION LEVEL = X where X is

• Serializable - transactions behave like executed one at a time.
• Repeatable read - repeated reads must return same data. Does not necessarily

read newly inserted records.
• Read committed - only committed values can be read, but successive reads may

return different values.
• Read uncommitted - even uncommitted records may be read. Reading an

uncommitted value is called a dirty read.

9

Scheduling of Transactions
Each transaction in a database is a separate executing program.

• A transaction may be its own program or a thread of execution.

The operating system schedules the execution of programs outside of
the control of the DBMS.

• Transactions may be executed in any order (as long as the order of operations
within a transaction are the same). This interleaving produces different
schedules.

The DBMS uses its concurrency control protocol to restrict the
schedules to those that respect the consistency specified by the user
for the transaction isolation level.

• All transactions must write lock any data item updated and lock the relation if
inserting.

• Isolation level only affects read locks.

10

Transaction Schedule Example
Transaction T2 that does two queries has its statements interleaved with
transaction T1 that does an update:

With isolation level read committed, total1 will not be the same as
total2.

With isolation level repeatable read, this schedule is not possible as T2 will
lock all accounts stopping T1 from updating.

SELECT SUM(balance) as total1 FROM Account; --T2
UPDATE Account WHERE num='S1' SET balance=balance+50;--T1
COMMIT; -- T1
SELECT SUM(balance) as total2 FROM Account; -- T2
COMMIT; -- T2

11

Transaction Schedule Example (2)
Transaction T2 that does two queries has its statements interleaved with
transaction T3 that does an insert:

With isolation level repeatable read, total1 will not be the same as
total2.

With isolation level serializable, this schedule is not possible as T2 will lock
the account table, stopping T3 from inserting.

SELECT SUM(balance) as total1 FROM Account; --T2
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT; -- T3
SELECT SUM(balance) as total2 FROM Account; -- T2
COMMIT; -- T2

12

Summary of Isolation Levels
Isolation Level Problems Lock Usage Speed Comments
Serializable None Read locks held to

commit ; read lock
on relation

Slowest Only level that guarantees
correctness.

Repeatable read Phantom
tuples

Read locks held to
commit

Medium Useful for modify transactions.
May not see tuples inserted by
others.

Read committed Phantom
tuples, values
may change

Read locks
released after
each statement

Fast Useful for transactions where
operations are separable but
updates are all or none. Re-
reading same value may
produce different results.

Read uncommitted Phantoms,
values may
change, dirty
reads

No read locks Fastest Useful for read-only
transactions that tolerate
inaccurate results. May see
updates that will never be
committed.

13

Read Committed Question
Question: Will this transaction always see the same results for both
queries if executed using READ COMMITTED?

A) yes

B) no

SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;
COMMIT;

14

Repeatable Read Question
Question: Will this transaction always see the same results for both
queries if executed using REPEATABLE READ?

A) yes

B) no

SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;
COMMIT;

15

try (Connection con = DriverManager.getConnection(url, uid, pw);
Statement stmt = con.createStatement();)

{
con.setAutocommit(false);
ResultSet rst = stmt.executeQuery("SELECT ename,salary

FROM emp WHERE eno='E1'");
if (rst.next() && rst.getDouble(2) < 50000)
{

stmt.executeUpdate("UPDATE emp SET salary=100000 WHERE eno='E1'");
con.commit();

} else
con.rollback();

}
catch (SQLException ex) {

System.err.println(ex); con.rollback();
}

JDBC Transaction Example

Force explicit commit/rollback

Commit work to DB

Rollback work done

16

Recursive Queries in SQL
General form:

Example: Return all employees supervised by 'J. Jones'.

WITH RECURSIVE tableName(attr1,attr2,..attrN) AS
<SELECT query that defines recursive relation>

<SELECT query that uses recursive relation>

WITH RECURSIVE supervises(supId,empId) AS (
SELECT supereno, eno FROM emp WHERE supereno IS NOT NULL
UNION ALL
SELECT S.supId, E.eno
FROM supervises S, emp E
WHERE S.empId = E.supereno)

SELECT E.eno, E.ename FROM supervises, emp AS S, emp E
WHERE S.ename = 'J. Jones' and supervises.supId = S.eno

and supervises.empId = E.eno;

17

Conclusion
A transaction is an atomic program that executes on the database and
preserves the consistency of the database.
In SQL, different isolation levels can be specified:

• serializable, repeatable read, read committed, read uncommitted
• Weaker forms of isolation do not guarantee the ACID properties, but may be

useful for read transactions that require faster execution.

Object-relational DBMSs support user defined data types, active
consistency checks (triggers), inheritance, and recursive queries.

• WITH RECURSIVE syntax is used to write recursive SQL queries.

18

Objectives
• Define: transaction
• List ACID properties.
• List and explain the isolation levels in SQL
• Be aware of WITH RECURSIVE for recursive SQL queries.

19

	Slide Number 1
	Transaction Management Overview
	Transaction Management - Motivating Example
	ACID Properties
	ACID Properties
	Transaction Definition in SQL
	Example Transactions
	Isolation Levels in SQL
	Scheduling of Transactions
	�Transaction Schedule Example
	�Transaction Schedule Example (2)
	Summary of Isolation Levels
	�Read Committed Question
	�Repeatable Read Question
	JDBC Transaction Example
	Recursive Queries in SQL
	Conclusion
	Objectives
	Slide Number 19

