
1

Database Programming

COSC 304 – Introduction to Database Systems

2

Database Programming Overview
Interaction with a database is often through programs. Programming
with a database requires:

• A database server and its connection information
• A programming language for writing the code to query the database
• A library or driver for connecting to the particular database system

General process for programming with a database:
1) Load the database access library
2) Create a connection to the database
3) Execute a SQL command
4) Retrieve database results produced by the command
5) Close the database connection

3

SQL Programming Architecture
Client Program

DB

Database Server
Software2. Create Connection

3. Execute SQL Command

4. Retrieve Results

5. Close connection

2) Create Connection Errors:
- Invalid server URL
- Incorrect user/password
- Network issues
- Wrong library

3) Execute SQL Errors:
- Incorrect SQL
- Wrong database/table
- Improper library use

4) Retrieve Results Errors:
- Wrong column name
- Wrong column index
- Off-by-one
- Improper library use
5) Close Connection:
- FORGET TO DO IT!

1) Load Library Error:
- Library not found

in path
- Wrong library

Database
Library

1. Load library into program

4

SQL Programming Architecture Question
Question: True or False: The user has sent a command to the database
and an error is returned. This error is often related to the user
providing an incorrect server URL.

A) true

B) false

5

Database Programming in Java
JDBC is the most popular method for accessing databases using Java
programs.

JDBC is an application programming interface (API) that contains
methods to connect to a database, execute queries, and retrieve
results.

For each DBMS, the vendor writes a JDBC driver that implements the
API. Application programs can access different DBMSs simply by
changing the driver used in their program.

6

JDBC Interfaces
The JDBC API consists of a set of interfaces.

• A Java interface is an abstract class consisting of a set of methods with no
implementation.

• To create a JDBC driver, the DBMS vendor must implement the interfaces by
defining their own classes and writing the code for the methods in the interface.

The main interfaces in the JDBC API are:
• Driver - The main class of the entire driver.
• Connection - For connecting to the DB using the driver.
• Statement - For executing a query using a connection.
• ResultSet - For storing and manipulating results returned by a Statement.
• DatabaseMetaData - For retrieving metadata (schema) information from a

database.

7

import java.sql.*;
public class TestJDBCMySQL
{ public static void main(String[] args)

{ String url = "jdbc:mysql://localhost/WorksOn";
String uid = "user";
String pw = "testpw";

try (Connection con = DriverManager.getConnection(url, uid, pw);
Statement stmt = con.createStatement();)

{
ResultSet rst = stmt.executeQuery("SELECT ename,salary FROM emp");
System.out.println("Employee Name,Salary");
while (rst.next())
System.out.println(rst.getString("ename")+","+rst.getDouble("salary"));

}
catch (SQLException ex)
{ System.out.println(ex); }

}
}

JDBC Program Example
DB Connection InfoImport JDBC API

Make DB connection

Create
statement

Execute
statement

Iterate
through
ResultSet

Using try-with-resources syntax so Statement and Connection objects closed at end of try

8

JDBC Driver Interface
The Driver interface is the main interface that must be
implemented by a DBMS vendor when writing a JDBC driver.

• The class itself does not do very much except allow a connection to be made to a
database through the driver.

• Note that you do not call the Driver class directly to get a connection. Drivers
self-register with the DriverManager so Class.forName() is no longer
needed.

• When you call DriverManager.getConnection(), the
DriverManager will attempt to locate a suitable driver using the URL.

9

jdbc:mysql://cosc304.ok.ubc.ca/testDB?user=test

JDBC specifies connection information in a URL that has the form:
protocol:dbprotocol://server/database?params

Example:

URL of DB
server

JDBC URL

JDBC protocol

subprotocol - used to
select driver to use

Name of DB
on server

Parameters

10

JDBC Connection Interface
The Connection interface contains methods for managing a
connection or session.

• A connection is opened after the call to getConnection() and should be
closed when you are done.

• The Connection interface is used to create statements for execution on the
database.

Connection con = DriverManager.getConnection(url, uid, pw);
Statement stmt = con.createStatement();
...
con.close();

11

Connection Interface and MetaData
A Connection to a database can also be used to retrieve the
database metadata (or schema).

• This is useful when you are writing generic tools where you do not know the
schema of the database that you are querying in advance.

The method getMetaData() can be used to retrieve a
DatabaseMetaData object.

12

String []tblTypes = {"TABLE"}; // What table types to retrieve
try {

DatabaseMetaData dmd = con.getMetaData(); // Get metadata
ResultSet rs1, rs2, rs5;

System.out.println("List all tables in database: ");
rs1 = dmd.getTables(null, null, "%", tblTypes);
while (rs1.next()) {

String tblName = rs1.getString(3);
Statement stmt = con.createStatement();
rs2 = stmt.executeQuery("SELECT COUNT(*) FROM "+tblName);
rs2.next();
System.out.println("Table: "+tblName+" # records: "+rs2.getInt(1));
rs5 = dmd.getColumns(null, null, tblName, "%");
System.out.println(" Attributes: ");
while (rs5.next()) {

System.out.println(rs5.getString(4));
}

} // end outer while
} // end try

DatabaseMetaData Example

13

JDBC Statement Interface
The Statement interface contains abstract methods for executing a
single static SQL statement and returning the results it produces.

• The Statement object is created by Connection.createStatement().
• The statement is then executed by calling executeQuery() and passing the

SQL string to execute.

Statement stmt = con.createStatement();
ResultSet rst = stmt.executeQuery("SELECT ename, salary FROM emp");

14

JDBC Statement Interface (2)
There are two important variations of executing statements that are
important and are used often.

• 1) The Statement executed is an INSERT, UPDATE, or DELETE and no
results are expected to be returned:

• 2) The Statement executed is an INSERT which is creating a new record in a
table whose primary key field is an autonumber field:

rowcount = stmt.executeUpdate("UPDATE emp Set salary=0");

rowcount = stmt.executeUpdate(
"INSERT Product VALUES ('PName')",
Statement.RETURN_GENERATED_KEYS);

ResultSet autoKeys = stmt.getGeneratedKeys();

15

PreparedStatement and CallableStatement
There are two special types of Statement objects:

• PreparedStatement - extends Statement and is used to execute
precompiled SQL statements.
 Useful when executing the same statement multiple times with different parameters as

the DBMS can optimize its parsing and execution.
 Also useful to prevent SQL injection attacks.

• CallableStatement - extends PreparedStatement and is used to
execute stored procedures.
 Stored procedures are precompiled SQL code stored at the database that take in

parameters for their execution.

String SQL = "UPDATE emp SET salary = ? WHERE ID = ?";
PreparedStatement pstmt = con.prepareStatement(SQL);
pstmt.setBigDecimal(1, 55657.34); // Set parameters
pstmt.setString(2,"E1");
int rowcount = pstmt.executeUpdate();

16

JDBC ResultSet
The ResultSet interface provides methods for manipulating the
result returned by the SQL statement.

• Remember that the result is a relation (table) which contains rows and columns.
• The methods provide ways of navigating through the rows and then selecting

columns of the current row.
• A ResultSet object maintains a cursor pointing to its current row of data.

Initially the cursor is positioned before the first row.
• The next() method moves the cursor to the next row. It returns false when

there are no more rows in the ResultSet object, so it can be used in a while
loop to iterate through the result set.

17

JDBC ResultSet (2)
By default a ResultSet is not updatable and the cursor can move forward-
only (can only use next() method).

• Remember, the first call to next() places the row cursor on the first row as the
cursor starts off before the first row.

• Use the getType() methods to retrieve a particular type.
 getArray(), getBlob(), getBoolean(), getClob(), getDate(),
getDouble(), getFloat(), getInt(), getLong(), getObject(),
getString(), getTime()

 All methods take as a parameter the column index in the ResultSet (indexed from 1) or
the column name and return the requested type.

 Java will attempt to perform casting if the type you request is not the type returned by the
database.

while (rst.next()) {
System.out.println(rst.getString("ename")+","+rst.getDouble(2));

}

18

Scrollable ResultSets
It is also possible to request ResultSets that allow you to navigate
backwards as well as forwards.

• Request ResultSet type during createStatement.

Scrollable ResultSets allow you to navigate in any direction through it,
and these methods can now be used:

 absolute(int row) - set cursor to point to the given row (starting at 1)
 afterLast(), beforeFirst(), first(), last(), next(), previous()
 Scrollable ResultSets may be less efficient than forward-only ResultSets.

// rs will be scrollable and read-only
Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet rs = stmt.executeQuery("SELECT eno, ename FROM emp");

19

Updatable ResultSets
Updatable ResultSets allow you to update fields in the query
result and update entire rows.

Updating an existing row:
// rs will be scrollable and updatable record set
Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT eno, ename FROM emp");

rs.absolute(2); // Go to the 2nd row
rs.updateString(2,"Joe"); // Change name of employee
rs.updateRow(); // Update data source

20

Updatable ResultSets (2)
Adding a new row to a ResultSet:
// rs will be scrollable and updatable record set
Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT eno, ename FROM emp");

rs.moveToInsertRow(); // Move cursor to insert row
rs.updateString(1,"E9");
rs.updateString("ename","Joe Smith");
rs.insertRow(); // Insert new row in DB
rs.moveToCurrentRow(); // Move cursor to row you were on

// before insert

21

JDBC API Question
Question: Which one is not a JDBC API interface?

A) Driver
B) Connection
C) Statement
D) ResultSet
E) HashMap

22

JDBC API Question
Question: Select a true statement.

A) When a ResultSet is first opened, the current row is 0.
B) When a ResultSet is first opened, the current row is 1.
C) When asking for columns, the first column is index 0.
D) The method call first() is allowed for a forward-only
ResultSet.

23

Custom APIs
Many databases have custom APIs for various languages.

• For example, MySQL has APIs for C/C++ and PHP in addition to ODBC and JDBC
drivers.

When to use a custom API?
• Custom APIs may be useful when the ODBC/JDBC standard does not provide

sufficient functionality.
• Also useful if know that application will only access one database. (Be careful with

this .. think of the future).

Custom APIs may have improved performance and increased functionality.
The disadvantage is that your code is written for a specific DBMS which
makes changes difficult.

• If you use a custom API, always isolate the database access code to a few general
classes and methods!

24

Object-Relational Mapping
Java Persistence Architecture (JPA)
A huge challenge with database programming is converting the database
results to and from Java objects. This is called object-relational mapping, and
it is tedious and error-prone.

• Impedance mismatch - Database returns values in tables and rows and Java code
manipulates objects, classes, and methods.

Various vendors (e.g. Hibernate) have produced object-relational mapping
technologies that help the programmer convert database results into Java
objects.

The Java Persistence Architecture (JPA) has been developed as a standard
interface. Vendors can then implement the interface in their products.

25

JDBC Question
Create a JDBC program that:

• Connects to WorksOn database on localhost.
• Prints on the console each department and its list of projects.

Variant:
• Output in reverse order by department number. Two versions:
 Change SQL
 Use scrollable ResultSets (hint: previous() method).

Challenge:
• Improve your code so that it prints the department number, name, and how

many projects in that department THEN the list of projects.

26

Conclusion
Querying databases can be done from any language with many
different APIs. Querying has these steps:

1) Load the database access library
2) Create a connection to the database
3) Execute a SQL command
4) Retrieve database results produced by the command
5) Close the database connection

Queried MySQL and Microsoft SQL Server with Java.
JDBC is an API for accessing databases using Java. Steps:

• Load a Driver for the database, Make a Connection, Create a Statement,
Execute a query to produce a ResultSet, Navigate the ResultSet to display
results or update the DB

27

Objectives
• Explain the common steps in querying a database using a programming

language.
• Draw and explain the database-program architecture and the key components.
• List the main JDBC classes (Driver, Connection, Statement,
ResultSet) and explain the role of each.

• Discuss the different types of ResultSets including scrollable and updatable
ResultSets.

• Write a simple JDBC program (given methods of the JDBC API).
• Discuss and explain the advantages and disadvantages of using a standard API

versus a vendor-based APIs.

28

	Slide Number 1
	Database Programming Overview
	SQL Programming Architecture
	�SQL Programming Architecture Question
	Database Programming in Java
	JDBC Interfaces
	JDBC Program Example
	JDBC Driver Interface
	JDBC URL
	JDBC Connection Interface
	Connection Interface and MetaData
	DatabaseMetaData Example
	JDBC Statement Interface
	JDBC Statement Interface (2)
	PreparedStatement and CallableStatement
	JDBC ResultSet
	JDBC ResultSet (2)
	Scrollable ResultSets
	Updatable ResultSets
	Updatable ResultSets (2)
	�JDBC API Question
	�JDBC API Question
	Custom APIs
	Object-Relational Mapping�Java Persistence Architecture (JPA)
	JDBC Question
	Conclusion
	Objectives
	Slide Number 28

