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Software Processes

● SPs are “activities involved in producing a software system”
● SP models are “abstract representations of these processes” 

(Definitions from [Sommerville2011])

● There is no ideal process.
● One size does not fit all.
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Fundamental Activities

● 4 fundamental activities – software … 
– Specification
– Design & Implementation
– Validation
– Evolution

● Major components:
– Products (= outcomes of an activity)
– Roles (= responsibilities of people involved)
– Pre- and post-conditions

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Software Specification

● Defines functionality of/constrains on the software product
● Also known as requirements engineering
● Nearly always the initial step
● Sub-activities:

– Feasibility study
– Requirements elicitation/analysis
– Requirements specification
– Requirements validation

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Software Specification
Image source (FU):  Sommerville, Software Engineering, Chapter 2, https://xkcd.com/1425/
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Requirements Specification

● User requirements: (“Lastenheft”)
– Statements in natural language (+ diagrams)
– What services is the system expected to provide?
– What constraints is it expected to observe?
– Often part of the call for bids (“Ausschreibung”)

● System requirements: (“Pflichtenheft”)
– Detailed description of functions/services
– Defines exactly what is to be implemented
– Often part of the contract

http://creativecommons.org/licenses/by-nc-sa/4.0/


19/05/20 Software Engineering -  © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

User requirements

● “Lastenheft”  customer's view→ customer's view
● Clear, rigid structure, e.g. from [Balzert2009]

● Goals
● Application area
● Functions
● Data
● (additional) Services
● Quality requirements
● Appendix

http://creativecommons.org/licenses/by-nc-sa/4.0/
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System requirements

● “Pflichtenheft”  developer's view→ customer's view
● Extension of UR with additional sections

● Goals
● Application area
● Product environment
● Functions
● Data
● (additional) Services
● Quality Goals
● Test scenarios
● Development environment
● Appendix

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Requirements Specification (2)

● User requirements example (“feature wishes”)
– The patient management system shall generate monthly management reports showing 

the cost of drugs prescribed by each clinic during that month.

● System requirements example (“testable”)
– On the last working day of each month, a summary of the drugs prescribed, their cost, 

and the prescribing clinics shall be generated. The system shall automatically generate 
the report for printing after 17:30 on the last working day of the month.

– A report shall be created for each clinic and shall list the individual drug names, the total 
number of prescriptions, the number of doses prescribed, and the total cost of the 
prescribed drugs. If drugs are available in different dose units (e.g., 10 mg, 20 mg) 
separate reports shall be created for each dose unit.

– Access to all cost reports shall be restricted to authorized users listed on a management 
access control list.

Source (FU):  Sommerville, Software Engineering, Chapter 4
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Requirements Specification (3)

● Functional requirements
– What should the system (not) do?
– E.g. “A user shall be able to search the appointment lists for all 

clinics.”
● Non-functional requirements

– Reliability, response time, security, ease of use … 
– E.g. “The system shall be available during normal working hours 

(Mo-Fr, 8:30 – 17:30). Downtime during NWH shall not exceed 5 sec. 
per day.”

– “The system shall conform to ISO Standard XYZ.”

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Software Design & Implementation

● Conversion from system specification to executable system
● Sub-activities:

– Design
● e.g. architecture, interface, component, database, …
● Often involves graphical models, UML

– Implementation
● Often interleaved with design (depending on SPM)
● Also involves testing & debugging

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Software Design & Implementation
Image source (FU):  Sommerville, Software Engineering, Chapter 2
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Software Validation

● Verification and validation (V&V)
● Validation  “Are we building the right product?” [Boehm79]→ customer's view

– User testing
– Acceptance testing (with user-supplied data)

● Verification  “Are we building the product right?” [Boehm79]→ customer's view
– Unit testing (with developer-supplied data)
– System testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Software Validation
Image source (FU):  Sommerville, Software Engineering, Chapter 2
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Software Evolution

● Also known as software maintenance
● Often higher costs than initial development
● Integral part of the entire software process

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Software Evolution
Image source (FU):  Sommerville, Software Engineering, Chapter 2
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● Beware of “not-invented-here” (NIH) syndrome
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“Plan-driven” vs. “Agile”

● Plan-driven processes: 
– All steps/activities planned in advance
– Progress measured against this plan

● Agile processes:
– Incremental planning
– Easier adaptation to change
– More difficult to measure progress

● Many hybrid methods

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example Software Processes

● Waterfall model
● Other “traditional” models
● Incremental development
● Reuse-oriented development

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Waterfall Model

● Derived from general systems engineering
● Phases … 

– have clear lifetimes (plan-driven)
– end with “sign-off” on specific documents                                                 

 iterations are expensive→ customer's view
● Used in formal development (proof-driven,                                  

for safety-critical systems)
● Very inflexible

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Other “traditional” models

● Rational Unified Process (RUP) [Krutchen03]
● Derived from work on UML
● Focus on business perspective
● Focus on iteration

Image source (CC):  https://en.wikipedia.org/wiki/Rational_Unified_Process
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Other “traditional” models

● Spiral Model [Boehm88]
● 4 sectors for each cycle
● Focus on risk assessment

Image source (PD):  https://en.wikipedia.org/wiki/Spiral_model 
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Other “traditional” models

● V Model [Boehm79], based on Waterfall
● Often used by German government
● Current variant: “V-Modell XT”

Image source (CC):  https://de.wikipedia.org/wiki/V-Modell
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Incremental Development
Image source (CC):  https://en.wikipedia.org/wiki/Incremental_build_model 
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Incremental Development

● Also known as evolutionary development
● Basis for many agile processes 
● Quickly develop multiple prototypes
● Test with end users, refine, repeat
● Very useful for GUI applications

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Reuse-oriented Development

● Focus on reuse/adaptation of existing components
● Needs requirement compromises
● Often used in Web context (e.g. LAMP stack)

Image source (FU):  Sommerville, Software Engineering, Chapter 2
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Reacting to Change

● Change will happen during the SP
● Two strategies for coping with change:

– Change avoidance  Prototyping→ customer's view
– Change tolerance  Incremental Delivery→ customer's view

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Prototyping

● Quickly create prototypes and expose to users
● Useful during all phases
● Initial prototypes may not even contain code (e.g. paper 

prototypes, mockups, Wizard-of-Oz)
● Be prepared to throw entire prototypes away

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Incremental Delivery

● Order functionality by importance
● Deliver most important functions to the end user first
● Either plan-driven (increments defined in advance) or agile 

(inc. defined on-the-fly)

Image source (FU):  Sommerville, Software Engineering, Chapter 2
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Questions/suggestions?
Image source (FU):  http://www.paragoninnovations.com/ng4/guide.shtml 
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