
Software Engineering

Lecture 04 – Software Processes

© 2015-20 Dr. Florian Echtler
Bauhaus-Universität Weimar

 <florian.echtler@uni-weimar.de>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

mailto:florian.echtler@uni-weimar.de
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 2

Software Processes

● SPs are “activities involved in producing a software system”
● SP models are “abstract representations of these processes”

(Definitions from [Sommerville2011])

● There is no ideal process.
● One size does not fit all.

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 3

Fundamental Activities

● 4 fundamental activities – software …
– Specification
– Design & Implementation
– Validation
– Evolution

● Major components:
– Products (= outcomes of an activity)
– Roles (= responsibilities of people involved)
– Pre- and post-conditions

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

Software Specification

● Defines functionality of/constrains on the software product
● Also known as requirements engineering
● Nearly always the initial step
● Sub-activities:

– Feasibility study
– Requirements elicitation/analysis
– Requirements specification
– Requirements validation

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 5

Software Specification
Image source (FU): Sommerville, Software Engineering, Chapter 2, https://xkcd.com/1425/

Requirements
elicitation and

analysis

Requirements
specification

Requirements
validation

System
models

User and system
requirements

Requirements
document

Feasibility
study

Feasibility
report

https://xkcd.com/1425/
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 6

Requirements Specification

● User requirements: (“Lastenheft”)
– Statements in natural language (+ diagrams)
– What services is the system expected to provide?
– What constraints is it expected to observe?
– Often part of the call for bids (“Ausschreibung”)

● System requirements: (“Pflichtenheft”)
– Detailed description of functions/services
– Defines exactly what is to be implemented
– Often part of the contract

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

User requirements

● “Lastenheft” customer's view→ customer's view
● Clear, rigid structure, e.g. from [Balzert2009]

● Goals
● Application area
● Functions
● Data
● (additional) Services
● Quality requirements
● Appendix

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 8

System requirements

● “Pflichtenheft” developer's view→ customer's view
● Extension of UR with additional sections

● Goals
● Application area
● Product environment
● Functions
● Data
● (additional) Services
● Quality Goals
● Test scenarios
● Development environment
● Appendix

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 9

Requirements Specification (2)

● User requirements example (“feature wishes”)
– The patient management system shall generate monthly management reports showing

the cost of drugs prescribed by each clinic during that month.

● System requirements example (“testable”)
– On the last working day of each month, a summary of the drugs prescribed, their cost,

and the prescribing clinics shall be generated. The system shall automatically generate
the report for printing after 17:30 on the last working day of the month.

– A report shall be created for each clinic and shall list the individual drug names, the total
number of prescriptions, the number of doses prescribed, and the total cost of the
prescribed drugs. If drugs are available in different dose units (e.g., 10 mg, 20 mg)
separate reports shall be created for each dose unit.

– Access to all cost reports shall be restricted to authorized users listed on a management
access control list.

Source (FU): Sommerville, Software Engineering, Chapter 4

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

Requirements Specification (3)

● Functional requirements
– What should the system (not) do?
– E.g. “A user shall be able to search the appointment lists for all

clinics.”
● Non-functional requirements

– Reliability, response time, security, ease of use …
– E.g. “The system shall be available during normal working hours

(Mo-Fr, 8:30 – 17:30). Downtime during NWH shall not exceed 5 sec.
per day.”

– “The system shall conform to ISO Standard XYZ.”

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 11

Software Design & Implementation

● Conversion from system specification to executable system
● Sub-activities:

– Design
● e.g. architecture, interface, component, database, …
● Often involves graphical models, UML

– Implementation
● Often interleaved with design (depending on SPM)
● Also involves testing & debugging

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 12

Software Design & Implementation
Image source (FU): Sommerville, Software Engineering, Chapter 2

Requirements
specification

System
architecture

Architectural
design

Abstract
specification

Interface
design

Component
design

Data structure
design

Algorithm
design

Software
specification

Interface
specification

Component
specification

Data structure
specification

Algorithm
specification

Design activities

Design products

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 13

Software Validation

● Verification and validation (V&V)
● Validation “Are we building the right product?” [Boehm79]→ customer's view

– User testing
– Acceptance testing (with user-supplied data)

● Verification “Are we building the product right?” [Boehm79]→ customer's view
– Unit testing (with developer-supplied data)
– System testing

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 14

Software Validation
Image source (FU): Sommerville, Software Engineering, Chapter 2

Acceptance
test plan

System
integration

test plan

Sub-system
integration

test plan

Requirements
specification

System
specification

System
design

Detailed
design

Sub-system
integration test

System
integration test

Acceptance
test

Service

Module and
unit tests

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 15

Software Evolution

● Also known as software maintenance
● Often higher costs than initial development
● Integral part of the entire software process

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 16

Software Evolution
Image source (FU): Sommerville, Software Engineering, Chapter 2

Existing
systems

Requirements
specification

New
system

Evaluate
existing systems

Propose system
changes

Modify
systems

● Beware of “not-invented-here” (NIH) syndrome

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 17

“Plan-driven” vs. “Agile”

● Plan-driven processes:
– All steps/activities planned in advance
– Progress measured against this plan

● Agile processes:
– Incremental planning
– Easier adaptation to change
– More difficult to measure progress

● Many hybrid methods

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 18

Example Software Processes

● Waterfall model
● Other “traditional” models
● Incremental development
● Reuse-oriented development

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 19

Waterfall Model

Requirements
specification

System and
software design

Implementation
and unit testing

Integration/
System testing

Operation/
maintenance

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 20

Waterfall Model

● Derived from general systems engineering
● Phases …

– have clear lifetimes (plan-driven)
– end with “sign-off” on specific documents

 iterations are expensive→ customer's view
● Used in formal development (proof-driven,

for safety-critical systems)
● Very inflexible

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 21

Other “traditional” models

● Rational Unified Process (RUP) [Krutchen03]
● Derived from work on UML
● Focus on business perspective
● Focus on iteration

Image source (CC): https://en.wikipedia.org/wiki/Rational_Unified_Process

https://en.wikipedia.org/wiki/Rational_Unified_Process
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 22

Other “traditional” models

● Spiral Model [Boehm88]
● 4 sectors for each cycle
● Focus on risk assessment

Image source (PD): https://en.wikipedia.org/wiki/Spiral_model

https://en.wikipedia.org/wiki/Spiral_model
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 23

Other “traditional” models

● V Model [Boehm79], based on Waterfall
● Often used by German government
● Current variant: “V-Modell XT”

Image source (CC): https://de.wikipedia.org/wiki/V-Modell

https://de.wikipedia.org/wiki/V-Modell
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 24

Incremental Development
Image source (CC): https://en.wikipedia.org/wiki/Incremental_build_model

https://en.wikipedia.org/wiki/Incremental_build_model
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 25

Incremental Development

● Also known as evolutionary development
● Basis for many agile processes
● Quickly develop multiple prototypes
● Test with end users, refine, repeat
● Very useful for GUI applications

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 26

Reuse-oriented Development

● Focus on reuse/adaptation of existing components
● Needs requirement compromises
● Often used in Web context (e.g. LAMP stack)

Image source (FU): Sommerville, Software Engineering, Chapter 2

Requirements
specification

Component
analysis

System design
with reuse

Requirements
modification

Development/
Integration

System
validation

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 27

Reacting to Change

● Change will happen during the SP
● Two strategies for coping with change:

– Change avoidance Prototyping→ customer's view
– Change tolerance Incremental Delivery→ customer's view

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 28

Prototyping

● Quickly create prototypes and expose to users
● Useful during all phases
● Initial prototypes may not even contain code (e.g. paper

prototypes, mockups, Wizard-of-Oz)
● Be prepared to throw entire prototypes away

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 29

Incremental Delivery

● Order functionality by importance
● Deliver most important functions to the end user first
● Either plan-driven (increments defined in advance) or agile

(inc. defined on-the-fly)

Image source (FU): Sommerville, Software Engineering, Chapter 2

Define outline
requirements

Define
increments

Integrate
increment

Design system
architecture

Validate
increment

Develop
increment

Validate
system

System incomplete

Final
System

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 30

Questions/suggestions?
Image source (FU): http://www.paragoninnovations.com/ng4/guide.shtml

http://www.paragoninnovations.com/ng4/guide.shtml
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30

